مهتری گروهی برای فضاهای خطی حقیقی
thesis
- وزارت علوم، تحقیقات و فناوری - دانشگاه ولی عصر (عج) - رفسنجان - دانشکده علوم ریاضی
- author راضیه نوری کوهبنانی
- adviser علی آرمند نژاد
- Number of pages: First 15 pages
- publication year 1390
abstract
نطریه مهتری گروهی در سال1977 توسط ایتون و پرلمن ودر سال1988 توسط آندرسون و پرلمن گسترش یافت
similar resources
طولپایی های خطی و خطی- حقیقی بین برخی فضاهای تابعی
چکیده در این پایان نامه که مراجع اصلی آن [15] ، [18] و [25] است ابتدا به بررسی طولپاهای خطی-حقیقی بین جبرهای یکنواخت و همچنین طولپاهای خطی روی فضاهای c^((n)) [0,1] و lip[0,1] می پردازیم که c^((n)) [0,1]، فضای توابع n-بار مشتق پذیر با مشتق n-ام پیوسته روی [0,1] و lip[0,1]، فضای توابع پیوسته لیپ شیتس روی [0,1] است. فضاهای c^((n)) [0,1] و lip[0,1] را با نرم های خاصی در نظر می گیریم و در این حالت ...
15 صفحه اولمروری بر مهتری های عادی و تعمیم یافته و بررسی ساختار نگهدارنده های خطی آنها
در این مقاله مفهوم مهتری در گونه های مختلف برداری، ماتریسی، چندگانه و تعمیم یافته بررسی می شود. هر یک از انواع مهتری یک رابطه هم ارزی روی مجموعه ماتریس ها تعریف می کند. ساختارنگه دارنده های خطی بعضی از این رابطه های هم ارزی را مشخص می کنیم.
full textut-مهتری و نگهدارنده های خطی آن
فرض کنید {m_(n,m جبر ماتریس های حقیقی n×m باشد. ماتریس r با درایه های نامنفی را سطری تصادفی می گوییم هرگاه مجموع درایه های روی هر سطر آن یک باشند. اگر x,y?r^n باشند، بردار x را، -ut مهتر (-lt مهتر) بردار y گوییم هرگاه ماتریس بالامثلثی (پایین مثلثی) سطری تصادفی مانند r یافت شوند به گونه ای که x=ry. ماتریس r سطری تصادفی مضاعف می گوییم هرگاه مجموع درایه های روی هر سطر آن یک باشند. اگر x,y?r^n باشن...
نگهدارنده های خطی مهتری روی فضای l^p(i)
چکیده: فرض کنیدvوw دو فضای برداری حقیقی و r یک رابطه روی v و w باشد. تبدیل خطی t:v?w را یک نگهدارنده r گویند هرگاه برای هر x,y ? v، xry ?txrty در این پایان نامه v=w:=lp(i) و r رابطه مهتری در نظر می گیریم. سپس بعضی از خواص مهم این رابطه را به دست آورده و همه عملگرهای روی این فضا مانند t:lp(i)?lp(i) را نگهدارنده مهتری باشند تعیین می کنیم. نشان می دهیم در این دسته از نگاشت ها تفاوت های قابل تو...
My Resources
document type: thesis
وزارت علوم، تحقیقات و فناوری - دانشگاه ولی عصر (عج) - رفسنجان - دانشکده علوم ریاضی
Keywords
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023